1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
use rand::Rng;
use std::collections::HashMap;
use std::time::Instant;
/// Represents a Turing Machine.
///
/// This Turing Machine struct consists of a set of states, transitions, a current state,
/// final states, a tape, and a head position.
#[derive(Clone, Debug)]
struct TuringMachine {
/// The states of the Turing Machine.
states: Vec<String>,
/// The transition function of the Turing Machine.
/// Maps a pair of current state and tape character to a tuple containing
/// the next state, the character to write, and the direction to move.
transitions: HashMap<(String, char), (String, char, char)>,
/// The current state of the Turing Machine.
current_state: String,
/// The final (accepting) states of the Turing Machine.
final_states: Vec<String>,
/// The tape of the Turing Machine.
tape: Vec<char>,
/// The current position of the tape head.
head_position: usize,
}
impl TuringMachine {
/// Creates a new Turing Machine.
///
/// # Arguments
///
/// * `states` - A vector of strings representing the states of the Turing Machine.
/// * `transitions` - A hash map representing the transition function.
/// * `initial_state` - The initial state of the Turing Machine.
/// * `final_states` - A vector of strings representing the final states.
///
/// # Returns
///
/// A new instance of `TuringMachine`.
fn new(
states: Vec<String>,
transitions: HashMap<(String, char), (String, char, char)>,
initial_state: String,
final_states: Vec<String>,
) -> Self {
Self {
states,
transitions,
current_state: initial_state,
final_states,
tape: vec!['_'], // Start with a blank tape
head_position: 0,
}
}
/// Executes a single step of the Turing Machine.
///
/// This function checks if the current state is a final state. If it is,
/// the machine halts and returns `false`. Otherwise, it reads the current
/// symbol under the tape head, finds the corresponding transition, writes
/// the new symbol, moves the tape head, and updates the current state.
///
/// # Returns
///
/// `true` if the Turing Machine successfully performed a step, or `false`
/// if it has reached a final state and halted.
///
/// # Panics
///
/// This function will panic if there is no transition defined for the
/// current state and symbol, or if the direction in the transition is not
/// 'R' or 'L'.
fn step(&mut self) -> bool {
if self.final_states.contains(&self.current_state) {
return false; // Halt if in a final state
}
let current_symbol = self.tape[self.head_position];
if let Some(&(ref new_state, new_symbol, direction)) = self
.transitions
.get(&(self.current_state.clone(), current_symbol))
{
// Write the new symbol to the tape
self.tape[self.head_position] = new_symbol;
// Move the head
match direction {
'R' => {
self.head_position += 1;
if self.head_position >= self.tape.len() {
self.tape.push('_'); // Extend the tape with a blank symbol if needed
}
}
'L' => {
if self.head_position > 0 {
self.head_position -= 1;
} else {
self.tape.insert(0, '_'); // Extend the tape to the left if needed
}
}
_ => panic!("Direction must be 'R' or 'L'"),
}
// Update the current state
self.current_state = new_state.clone();
true
} else {
panic!("No transition defined for this state and symbol");
}
}
/// Runs the Turing Machine with a given input string.
///
/// This function initializes the tape with the provided input string,
/// appends a blank symbol at the end, and sets the head position to the
/// start of the tape. It then repeatedly executes steps until the machine
/// halts.
///
/// # Arguments
///
/// * `input_string` - A string representing the initial input on the tape.
///
/// # Returns
///
/// A `String` representing the contents of the tape after the machine has
/// halted, with trailing blank symbols removed.
fn run(&mut self, input_string: &str) -> String {
// Initialize the tape with the input string
self.tape = input_string.chars().collect();
self.tape.push('_'); // Add a blank symbol at the end
self.head_position = 0;
self.current_state = self.states[0].clone();
// Run the Turing machine until it halts
while self.step() {}
self.tape
.iter()
.collect::<String>()
.trim_end_matches('_')
.to_string() // Return the tape contents without trailing blanks
}
}
/// Generates two random numbers.
///
/// The first number is generated between 2 and 999 (inclusive),
/// and the second number is generated between 1 and the first number (exclusive),
/// ensuring that it is always smaller.
///
/// # Returns
///
/// A tuple containing two `u32` numbers, where the first number is greater than the second.
fn generate_random_numbers() -> (u32, u32) {
let mut rng = rand::thread_rng();
let num1: u32 = rng.gen_range(2..1000); // Generate a random number
let num2: u32 = rng.gen_range(1..num1); // Ensure the second number is smaller
(num1, num2)
}
/// Main function to execute the Turing Machine simulation.
///
/// This function sets up the Turing Machine with predefined states and transitions,
/// generates random numbers, converts them to binary, and runs the Turing Machine
/// to verify that the sum of the numbers is correctly computed in binary form.
/// It runs a series of tests and asserts that the Turing Machine's output matches
/// the expected binary sum.
///
/// # Panics
///
/// The function will panic if the Turing Machine's result does not match the expected
/// binary sum of the two random numbers generated.
fn main() {
// Define the Turing machine components
let states = vec![
"A".to_string(),
"B".to_string(),
"C".to_string(),
"D".to_string(),
"E".to_string(),
"Z".to_string(),
];
let transitions = HashMap::from([
(("A".to_string(), '0'), ("A".to_string(), '0', 'R')),
(("A".to_string(), '1'), ("A".to_string(), '1', 'R')),
(("A".to_string(), '+'), ("A".to_string(), '+', 'R')),
(("A".to_string(), '_'), ("B".to_string(), '_', 'L')),
(("B".to_string(), '0'), ("B".to_string(), '1', 'L')),
(("B".to_string(), '1'), ("C".to_string(), '0', 'L')),
(("B".to_string(), '+'), ("E".to_string(), '_', 'R')),
(("C".to_string(), '0'), ("C".to_string(), '0', 'L')),
(("C".to_string(), '1'), ("C".to_string(), '1', 'L')),
(("C".to_string(), '+'), ("D".to_string(), '+', 'L')),
(("D".to_string(), '0'), ("A".to_string(), '1', 'R')),
(("D".to_string(), '_'), ("A".to_string(), '1', 'R')),
(("D".to_string(), '1'), ("D".to_string(), '0', 'L')),
(("E".to_string(), '1'), ("E".to_string(), '_', 'R')),
(("E".to_string(), '_'), ("Z".to_string(), '_', 'L')),
]);
let initial_state = "B".to_string();
let final_states = vec!["Z".to_string()];
// Create a Turing machine instance
let mut tm = TuringMachine::new(states, transitions, initial_state, final_states);
let start = Instant::now();
for _ in 0..10000 {
// Generate two random numbers
let (num1, num2) = generate_random_numbers();
// Convert numbers to binary strings
let binary1 = format!("{:b}", num1);
let binary2 = format!("{:b}", num2);
// Prepare the input for the Turing machine
// Assuming the Turing machine expects the format "binary1+binary2"
let tm_input = format!("{}+{}", binary1, binary2);
// Run the Turing machine with the input
let result = tm.run(&tm_input);
// Calculate the expected result
let expected_sum = num1 + num2;
let expected_binary_sum: String = format!("{:b}", expected_sum);
// Verify the Turing machine result
assert_eq!(
result, expected_binary_sum,
"The Turing machine result does not match the expected binary sum."
);
}
println!("All tests passed!");
let duration = start.elapsed();
println!("Time elapsed in running the Turing Machine: {:?}", duration);
}