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1 Notation

We consider a probability space (£, F, P), where 2 is the
sample space, F a og-algebra of events, and P a probability
measure.

Random variables X1,..., X, are measurable functions

X;: Q— X,
where X is the observation space (e.g., R or R?) equipped

with an appropriate o-algebra.

A realization or measurement of X; is denoted by z; € X.
The observed data vector is

x=(21,...,2,) € X",

corresponding to the random vector X = (X1,...,X,).

The joint distribution of X is denoted by P, which belongs
to a collection (statistical model) P of possible distribu-
tions of X.

In parametric models, P is indexed by parameters 6 € ©,
so that
P = {Pg 10 € @}

Often, the random variables are assumed independent and
identically distributed (iid) with distribution Py on X.
Then X has distribution

P9®...®P9:P5®"oné\f",

where Pg@" is the n-fold product distribution.

A parameter of interest is typically a function v = ¢(9),
defined on ©.

2 Estimation

Definition: Estimator

An estimator (or statistic, or decision) is a known mea-
surable function
T:X" >R

evaluated at the random vector X, i.e. the estimator
random variable is T'(X). The function T itself must
not depend on unknown parameters, since we want to
compute it using only the data we have observed.

Likelihood function and MLE

For data X = (X4, ..., X,,), the likelihood function is

Lx(0) =[] pe(Xi), 6€o.
i=1
A mazimum likelihood estimator (MLE) is any
0 € arg max Lx(0).
Equivalently, 6 maximizes the log-likelihood:

0 1 X;).
€ arggleag)(; og po(X;)

3 Intermezzo

3.1 Conditional Distributions
The conditional probability of A given B is defined as

P(AB) = P(]ﬁ‘(;)B) -

P(B|A)P(A)
P(B)

Continuous Case

Given two continuous random vectors X € R™ and
Y € R™ defined on the same probability space and
joint density fx y(z,y), the marginal density of X is
given by
fx(z) = Ixv(z,y)dy.
Rm,
The conditional density of X given Y =y is

fX Y(l‘7 y)
fx(zly) = —=—F=—»
(ey) fr ()
If fy(y) > 0, and 0 otherwise.
For measurable g : R” x R™ — R, the conditional ex-
pectation given Y =y is

E[g(X,Y)|Y =] = / i el

n

Discrete Case

Suppose X and Y are discrete random vectors taking
values in X = {a;}ien. The joint distribution is de-
scribed by the probabilities

P(X:CLZ',Y:(L]'), Z,jGN
The marginal distribution of YV is
o
py(a;) =P(Y =a;)=> P(X =a;,Y =qa;).
i=1

The conditional distribution of X given Y = q; is

P(X =a;,Y =aj)

px(aila) =PX =ai |V =0)) = =552

if P(Y =a;) > 0, and 0 otherwise.
For any function g : X x X — R, the conditional expec-
tation given Y = a; is

Eg(X,Y) Y =a;] = Zg(aiaaj)p)((ai | aj),

i=1

provided the series converges.

)



Tower Property
If the expectation of g(X,Y) exists, then

E[E[g(X,Y)[Y]] = E[g(X, Y)].

3.2 Exercises
Definition: Characteristic function

The characteristic function of a random variable X is

px(t) = E[e"*]

Distribution Characteristic function

N(n,0?) ox (t) = exp (wt - 0"';2)

Exp(3) px(t) = 225

Bern(p) px(t) =1—p+pe’

Poisson(\)  px(t) = exp (A(et — 1))
()

Binomial(n,p) ¢x(t) = (1 —p+ pet

Gamma(a, 8)  px(t) = (1 - %>7a

Density of Z =X +Y (E1)
For independent X, Y and Z =X +Y

0z (t) = px(t) - v (t)
Transformation of one-dimensional random vari-

ables

Let Y = ¢(X) be a differentiable, strictly monotone
transformation of a continuous random variable X.
Then the density of Y is
-1 d 4
fr(w) = fx(97'®)) ay’ (y)’~

Multivariate transformation of random variables
(E3)

Let (U, V) = g(X,Y) with inverse g~ '(u,v) =
(x(u,v),y(u,v)). The joint density of (U, V) is

fov(u,v) = fxy(z(u,v),y(u,v)) |det Jgfl(u,v)|

where
Oz Oz
Jy-1(u,v) = [gg g}j}
ou ov

CDF of ¢(X,Y) (E3)

Let X and Y have joint pdf fx y(z,y). For a random
variable Z = g(X,Y), the cumulative distribution func-
tion (CDF) at ¢ is

Fr()=BZ<t)= [ fev(@y)dedy.
{(@,y):9(2,y) <t}
In other words, the CDF of Z is found by integrating

the joint pdf over the region where the function g(X,Y)
is at most .

4 Sufficiency and exponential fami-

lies
4.1 Sufficiency

Definition: Sufficient statistic

Let S : X — ) be some map. We consider the statis-
tic S = S(X) sufficient if, for all § € O, all possible
s = S(X) € Y and every measurable set A C X™ the
conditional distribution

Py (X € AIS(X) = 3).

does not depend on 6.

Intuitively, we can reduce the data X to S without losing

any information about the model parameter 6.

4.2 Factorisation Theorem of Neyman

Factorisation Theorem of Neyman

Suppose that each element of P = {Py : § € ©} is
dominated by a o-finite measure v. Let pg = ddl;’ denote
the densities. Then, S is sufficient if and only if one can
write

po(x) = go(S(z)) h(z) for all x and 0,

for some functions gy(-) on Y and h(:) on X. The func-
tions gp and h can be chosen to be non-negative.

Moreover, if there is a sufficient statistic S for 6, and

the MLE exists, it only depends on the sufficient statistic
S = 5(X) and is given by

0 € argmgmeX(H) = argmélxgg(S).

4.3 Exponential families

k-dimensional exponential family

A k-dimensional exponential family (where k is the di-
mensionality of ©) is a class of probability distributions
whose densities can be expressed in the form

po(z) =exp | > c;(0)T;(x)—d(0) | h(=).

Gl

Where

e S(x) = (Th(X),...,Tr(X)) is a k-dimensional suffi-
cient statistic,

e c;(0) is a natural parameter,

e d(0) is the log-partition function ensuring that the den-
sity integrates (or sums) to 1,

e and h(z) is the base measure, independent of 6.



Distribution of X = (X1,...,X,,)

If X1,...,X, is an iid sample of a k-dimensional exo-
nential family, then the density of X is

k
Hp9 zz = ch(

Where Tj(z) = > i, Tj(z)

7fnd

Hhxl

4.4 Canonical form of an exponential family

A k-dimensional exponential family is in canonical form if
¢;(0) = 6;. Assuming necessary derivatives exist, denote

(6) = Ld(o). (o) = (ajaejdw)) -~
and write T'(x) = (T1(x), ..., Tx(x)), z € X.

Under regularity assumptions it holds that
E[T(X)] = d(6), Cove(T(X)) = d(6),
and in the one-dimensional case,

Varg(T(X)) = d(6).

5 Bias, variance, and the Cramér-
Rao lower bound

5.1 Unbiased estimators
Unbiased Estimator
An estimator T of g(6) is unbiased if

Eo[T] = g(6) V0 € ©.

5.2 UMVU estimators
Definition: UMVU estimator

An unbiased estimator T is Uniformly Minimum Vari-
ance Unbiased (UMVU) if

Vary(T*) < Vary(T) V9 €O

for any other unbiased estimator T'.

If a UMVU estimator exists, then it is unique.
Complete statistics

A statistics S is called complete if, for any measurable
function h (such that h(S) is integrable with respect to
all Py )

Eo[h(S)] =0 V9O = h(S)=0, Pyas. V0ecO.

Theorem: Lehmann-Scheffé

Let T be an unbiased estimator of g(¢) with finite vari-
ance, and let S be a sufficient and complete statistic.
Then

T :=E[T | 5]

is UMVU.

A consequence of the Lehmann-Scheffé theorem is the
following: Let S be a complete and sufficient statistic for 9.
Then any estimator of the form

T =c- 85,

where ¢ is a non-random constant chosen such that 7™ is
unbiased for g(v¥), is UMVU.

Completeness in exponential families

Suppose we have a k-dimensional exponential family.
Define

C:={(c1(0),...,ck(0)): 6 € O} C RF.

If C contains an open ball in R*, then S := (T1, ...
is complete.

7Tk)

5.3 The Cramér-Rao lower bound

We define the score function as

d 259(50)
sg(x — lo ,
And the Fisher information as
1(0) = Eg [s6(X)?] = Var(se(X)),

Cramér-Rao lower bound

The Cramér-Rao lower bound provides a lower bound
on the variance of any unbiased estimator 7' of a pa-
rameter ¢(#). is differentiable with derivative

%Q(e) =

Moreover, if I(0) > 0,

q(0) = Cov(T, sg(X)).

Varg(T) > (4(9))*

Fisher information for independent samples

Suppose X1, ..., X, are i.i.d. with density py, differen-
tiable in €, and let sy denote the score function. The
joint density of X = (X1,...,X,,) is

x) = Hpe(%%

The joint score function satisfies

x = (T1,...,Zn).

- sle)
and the Fisher information of X is additive:

Z Varg s9(X

where I(0) is the Fisher information of a single obser-
vation.

d
s6(x) = 75 log po(x) Z @bgpe ;)

I,(6) = Varg(so(X )) = nlI(6),

5.4 The CRLB and exponential families

Suppose T is an unbiased estimator of g(6) with finite posi-
tive variance and attains the CRLB. Then P = {py : 6 € O}
is a 1-dimensional exponential family. Moreover, ¢(-) and d(+)
are differentiable and

The score function is

so(x) = e(0)T () — d(6),


https://www.desmos.com/calculator/0bviedr65q

The Fisher information can be written as

1(0) = Varg(se(X)) = é(0)*Varg(T (X)) = ¢(0)§(0).

Since T is unbiased for g(6), its variance attains the Cramér-

Rao lower bound:

g9(0)* _ 9(0) _ _I1(0)

Varg(T(X)) (¢(0))?

6 Tests and confidence intervals

6.1 Constructing tests
Definition 6.1: Randomized test

A (randomized) test is a statistic ¢ : X — [0,1]. If
¢ = ¢(X) € {0, 1}, the test is non-randomized.

Let ©p C © and « € (0,1). The test ¢ is a test at level
« for the (null) hypothesis

Hy:0 €0
if

sup Ego(X) < a.
0€0y

If ¢ is non-randomized, then Fy¢(X) = Py(op(X) = 1).
We reject Hy when ¢(X) = 1, controlling the error probabil-

ity at level a.

For a randomized test with ¢(X) = ¢ € [0, 1], we reject
Hy by flipping a coin with success probability ¢q. Thus, con-
trolling the test level ensures the average rejection probability

under Hy is at most a.

7 Useful

7.1 Formulas

Convolution of independent discrete random
variables

CHANGE TO CONTINUOUS CASE For independent
discrete random variables X, Y with pmfs px, py

pxiv(2) =D px(z — y)py ().

7.2 Tables

Distribution Density / PMF

N, 0%) Ix(@) = ey ew (-C555), wer
Exp(A) fx (@) = Ae™ 1550y

Bern(p) fx(@) =p*(1-p)'~*, ze{0,1}
Poisson()\) P(X =k)=e 2 k=0,1,2,...

Binomial(n,p) P(X =k)= (Z)pk(l —p)" k. k=0,1,...,n

Gamma(a, 8)  fx(z) = Fﬁzz)xo‘*lefﬁzﬂ{mzo}

7.3 Distributions

Poisson distribution Pois(\)

Intuition: Models the number of events occurring in a
fixed interval of time or space, assuming events happen
independently at a constant average rate.

Parameters: A\ € (0,00) (rate)

Support: k € Ny

PMF: . s
Ae™
plk) = 22—

CDEF: Not used, too complicated
Mean: E[X] = A

Variance: Var(X) = A
Exponential family form:

pa(k) = exp (klog A — A — log(k!)), &k € No.
Characteristic function:
px(t) = E[e"*] = exp [Me" - 1)].

Fisher information:

_1

=

Properties: If X ~ Pois(f) and Y ~ Pois(A) are inde-
pendent, then

I(A)

X +Y ~ Pois(6 + A).

Exponential distribution Exp())

Intuition: Models the waiting time until the first event
in a Poisson process with rate ), i.e., time between in-
dependent events occurring at a constant average rate.
Parameters: A € (0,00) (rate)
Support: z € [0, 00)
PDF:

fz) = e 7.

CDF:
F(z)=1—e?2,

Mean: E[X] = ;
Variance: Var(X) = 35
Exponential family form:

falz) = exp (logh — Az), x>0.

Characteristic function:

3 A
t) = E[e®™X] = teR.
px(t) =Bl = T2, te
Fisher information:
1

Properties:
e Memoryless property: For s,t > 0,

P(X>s+t|X >s)=P(X >t).

e The sum of n independent Exp(\) variables is
Gamma(n, \) distributed.
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