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1 Notation

We consider a probability space (Ω,F , P ), where Ω is the
sample space, F a σ-algebra of events, and P a probability
measure.

• Random variables X1, . . . , Xn are measurable functions

Xi : Ω → X ,

where X is the observation space (e.g., R or Rd) equipped
with an appropriate σ-algebra.

• A realization or measurement of Xi is denoted by xi ∈ X .
The observed data vector is

x = (x1, . . . , xn) ∈ Xn,

corresponding to the random vector X = (X1, . . . , Xn).

• The joint distribution of X is denoted by P , which belongs
to a collection (statistical model) P of possible distribu-
tions of X.

• In parametric models, P is indexed by parameters θ ∈ Θ,
so that

P = {Pθ : θ ∈ Θ}.

• Often, the random variables are assumed independent and
identically distributed (iid) with distribution Pθ on X .
Then X has distribution

Pθ ⊗ . . .⊗ Pθ = P⊗n
θ on Xn,

where P⊗n
θ is the n-fold product distribution.

• A parameter of interest is typically a function γ = g(θ),
defined on Θ.

2 Estimation

Definition: Estimator

An estimator (or statistic, or decision) is a known mea-
surable function

T : Xn → R

evaluated at the random vector X, i.e. the estimator
random variable is T (X). The function T itself must
not depend on unknown parameters, since we want to
compute it using only the data we have observed.

Likelihood function and MLE

For data X = (X1, . . . , Xn), the likelihood function is

LX(θ) =

n∏
i=1

pθ(Xi), θ ∈ Θ.

A maximum likelihood estimator (MLE) is any

θ̂ ∈ argmax
θ∈Θ

LX(θ).

Equivalently, θ̂ maximizes the log-likelihood :

θ̂ ∈ argmax
θ∈Θ

n∑
i=1

log pθ(Xi).

3 Intermezzo

3.1 Conditional Distributions

The conditional probability of A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B)
.

Continuous Case

Given two continuous random vectors X ∈ Rn and
Y ∈ Rm defined on the same probability space and
joint density fX,Y (x, y), the marginal density of X is
given by

fX(x) =

∫
Rm

fX,Y (x, y) dy.

The conditional density of X given Y = y is

fX(x|y) = fX,Y (x, y)

fY (y)
,

If fY (y) > 0, and 0 otherwise.
For measurable g : Rn × Rm → R, the conditional ex-
pectation given Y = y is

E[g(X,Y ) | Y = y] =

∫
Rn

g(x, y)fX(x|y) dx.

Discrete Case

Suppose X and Y are discrete random vectors taking
values in X = {ai}i∈N. The joint distribution is de-
scribed by the probabilities

P (X = ai, Y = aj), i, j ∈ N.

The marginal distribution of Y is

pY (aj) = P (Y = aj) =

∞∑
i=1

P (X = ai, Y = aj).

The conditional distribution of X given Y = aj is

pX(ai | aj) = P (X = ai | Y = aj) =
P (X = ai, Y = aj)

P (Y = aj)
,

if P (Y = aj) > 0, and 0 otherwise.
For any function g : X ×X → R, the conditional expec-
tation given Y = aj is

E[g(X,Y ) | Y = aj ] =

∞∑
i=1

g(ai, aj)pX(ai | aj),

provided the series converges.
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Tower Property

If the expectation of g(X,Y ) exists, then

E[E[g(X,Y )|Y ]] = E[g(X,Y )].

3.2 Exercises

Definition: Characteristic function

The characteristic function of a random variable X is

φX(t) = E[eitX ]

Distribution Characteristic function

N (µ, σ2) φX(t) = exp
(
iµt− σ2t2

2

)
Exp(λ) φX(t) = λ

λ−it

Bern(p) φX(t) = 1− p+ peit

Poisson(λ) φX(t) = exp
(
λ(eit − 1)

)
Binomial(n, p) φX(t) = (1− p+ peit)n

Gamma(α, β) φX(t) =
(
1− it

β

)−α

Density of Z = X + Y (E1)

For independent X, Y and Z = X + Y

φZ(t) = φX(t) · φY (t)

Transformation of one-dimensional random vari-
ables

Let Y = g(X) be a differentiable, strictly monotone
transformation of a continuous random variable X.
Then the density of Y is

fY (y) = fX
(
g−1(y)

) ∣∣∣∣ ddy g−1(y)

∣∣∣∣ .

Multivariate transformation of random variables
(E3)

Let (U, V ) = g(X,Y ) with inverse g−1(u, v) =
(x(u, v), y(u, v)). The joint density of (U, V ) is

fU,V (u, v) = fX,Y (x(u, v), y(u, v))
∣∣det Jg−1(u, v)

∣∣
where

Jg−1(u, v) =

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

CDF of g(X,Y ) (E3)

Let X and Y have joint pdf fX,Y (x, y). For a random
variable Z = g(X,Y ), the cumulative distribution func-
tion (CDF) at t is

FZ(t) = P(Z ≤ t) =
x

{(x,y):g(x,y)≤t}

fX,Y (x, y) dx dy.

In other words, the CDF of Z is found by integrating
the joint pdf over the region where the function g(X,Y )
is at most t.

4 Sufficiency and exponential fami-
lies

4.1 Sufficiency

Definition: Sufficient statistic

Let S : X → Y be some map. We consider the statis-
tic S = S(X) sufficient if, for all θ ∈ Θ, all possible
s = S(X) ∈ Y and every measurable set A ⊆ Xn the
conditional distribution

Pθ (X ∈ A|S(X) = s) .

does not depend on θ.

Intuitively, we can reduce the data X to S without losing
any information about the model parameter θ.

4.2 Factorisation Theorem of Neyman

Factorisation Theorem of Neyman

Suppose that each element of P = {Pθ : θ ∈ Θ} is
dominated by a σ-finite measure ν. Let pθ = dPθ

dν denote
the densities. Then, S is sufficient if and only if one can
write

pθ(x) = gθ(S(x))h(x) for all x and θ,

for some functions gθ(·) on Y and h(·) on X . The func-
tions gθ and h can be chosen to be non-negative.

Moreover, if there is a sufficient statistic S for θ, and
the MLE exists, it only depends on the sufficient statistic
S = S(X) and is given by

θ̂ ∈ argmax
θ

LX(θ) = argmax
θ

gθ(S).

4.3 Exponential families

k-dimensional exponential family

A k-dimensional exponential family (where k is the di-
mensionality of Θ) is a class of probability distributions
whose densities can be expressed in the form

pθ(x) = exp

 k∑
j=1

cj(θ)Tj(x)−d(θ)

h(x).

Where

• S(x) = (T1(X), . . . , Tk(X)) is a k-dimensional suffi-
cient statistic,

• cj(θ) is a natural parameter,

• d(θ) is the log-partition function ensuring that the den-
sity integrates (or sums) to 1,

• and h(x) is the base measure, independent of θ.
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Distribution of X = (X1, . . . , Xn)

If X1, . . . , Xn is an iid sample of a k-dimensional exo-
nential family, then the density of X is

n∏
i=1

pθ(xi) = exp

 k∑
j=1

cj(θ)T̄j − nd(θ)

 n∏
i=1

h(xi),

Where T̄j(x) =
∑n

i=1 Tj(xi)

4.4 Canonical form of an exponential family

A k-dimensional exponential family is in canonical form if
cj(θ) = θj . Assuming necessary derivatives exist, denote

ḋ(θ) =
d

dθ
d(θ), d̈(θ) =

(
∂2

∂θi∂θj
d(θ)

)
ij

,

and write T (x) = (T1(x), . . . , Tk(x))
′, x ∈ X .

Under regularity assumptions it holds that

Eθ[T (X)] = ḋ(θ), Covθ(T (X)) = d̈(θ),

and in the one-dimensional case,

Varθ(T (X)) = d̈(θ).

5 Bias, variance, and the Cramér-
Rao lower bound

5.1 Unbiased estimators

Unbiased Estimator

An estimator T of g(θ) is unbiased if

Eθ[T ] = g(θ) ∀θ ∈ Θ.

5.2 UMVU estimators

Definition: UMVU estimator

An unbiased estimator T ∗ is Uniformly Minimum Vari-
ance Unbiased (UMVU) if

Varϑ(T
∗) ≤ Varϑ(T ) ∀ϑ ∈ Θ

for any other unbiased estimator T .

If a UMVU estimator exists, then it is unique.

Complete statistics

A statistics S is called complete if, for any measurable
function h (such that h(S) is integrable with respect to
all Pθ )

Eθ[h(S)] = 0 ∀θ ∈ Θ =⇒ h(S) = 0, Pθ-a.s. ∀θ ∈ Θ.

Theorem: Lehmann-Scheffé

Let T be an unbiased estimator of g(ϑ) with finite vari-
ance, and let S be a sufficient and complete statistic.
Then

T ∗ := E[T | S]

is UMVU.

A consequence of the Lehmann-Scheffé theorem is the
following: Let S be a complete and sufficient statistic for ϑ.
Then any estimator of the form

T ∗ = c · S,

where c is a non-random constant chosen such that T ∗ is
unbiased for g(ϑ), is UMVU.

Completeness in exponential families

Suppose we have a k-dimensional exponential family.
Define

C := {(c1(θ), . . . , ck(θ)) : θ ∈ Θ} ⊆ Rk.

If C contains an open ball in Rk, then S := (T1, . . . , Tk)
is complete.

5.3 The Cramér-Rao lower bound

We define the score function as

sθ(x) =
d

dθ
log pθ(x) =

ṗθ(x)

pθ(x)
,

And the Fisher information as

I(θ) = Eθ

[
sθ(X)2

]
= Var(sθ(X)),

as Eθ [sθ(X)] = 0.

Cramér-Rao lower bound

The Cramér-Rao lower bound provides a lower bound
on the variance of any unbiased estimator T of a pa-
rameter g(θ). is differentiable with derivative

q̇(θ) =
d

dθ
q(θ) = Cov(T, sθ(X)).

Moreover, if I(θ) > 0,

Varθ(T ) ≥
(q̇(θ))2

I(θ)
.

Fisher information for independent samples

Suppose X1, . . . , Xn are i.i.d. with density pθ, differen-
tiable in θ, and let sθ denote the score function. The
joint density of X = (X1, . . . , Xn) is

pθ(x) =

n∏
i=1

pθ(xi), x = (x1, . . . , xn).

The joint score function satisfies

sθ(x) =
d

dθ
log pθ(x) =

n∑
i=1

d

dθ
log pθ(xi) =

n∑
i=1

sθ(xi),

and the Fisher information of X is additive:

In(θ) = Varθ
(
sθ(X)

)
=

n∑
i=1

Varθ
(
sθ(Xi)

)
= nI(θ),

where I(θ) is the Fisher information of a single obser-
vation.

5.4 The CRLB and exponential families

Suppose T is an unbiased estimator of g(θ) with finite posi-
tive variance and attains the CRLB. Then P = {pθ : θ ∈ Θ}
is a 1-dimensional exponential family. Moreover, c(·) and d(·)
are differentiable and

g(θ) =
ḋ(θ)

ċ(θ)
= Eθ [T ] , θ ∈ Θ.

The score function is

sθ(x) = ċ(θ)T (x)− ḋ(θ),

https://www.desmos.com/calculator/0bviedr65q
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The Fisher information can be written as

I(θ) = Varθ(sθ(X)) = ċ(θ)2Varθ(T (X)) = ċ(θ)ġ(θ).

Since T is unbiased for g(θ), its variance attains the Cramér-
Rao lower bound:

Varθ(T (X)) =
ġ(θ)2

I(θ)
=

ġ(θ)

ċ(θ)
=

I(θ)

(ċ(θ))2

6 Tests and confidence intervals

6.1 Constructing tests

Definition 6.1: Randomized test

A (randomized) test is a statistic ϕ : X → [0, 1]. If
ϕ = ϕ(X) ∈ {0, 1}, the test is non-randomized.
Let Θ0 ⊆ Θ and α ∈ (0, 1). The test ϕ is a test at level
α for the (null) hypothesis

H0 : θ ∈ Θ0

if
sup
θ∈Θ0

Eθϕ(X) ≤ α.

If ϕ is non-randomized, then Eθϕ(X) = Pθ(ϕ(X) = 1).
We reject H0 when ϕ(X) = 1, controlling the error probabil-
ity at level α.

For a randomized test with ϕ(X) = q ∈ [0, 1], we reject
H0 by flipping a coin with success probability q. Thus, con-
trolling the test level ensures the average rejection probability
under H0 is at most α.

7 Useful

7.1 Formulas

Convolution of independent discrete random
variables

CHANGE TO CONTINUOUS CASE For independent
discrete random variables X,Y with pmfs pX , pY

pX+Y (z) =
∑
y

pX(z − y)pY (y).

7.2 Tables

Distribution Density / PMF

N (µ, σ2) fX(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
, x ∈ R.

Exp(λ) fX(x) = λe−λx
1{x≥0}

Bern(p) fX(x) = px(1− p)1−x, x ∈ {0, 1}

Poisson(λ) P (X = k) = e−λ λk

k!
, k = 0, 1, 2, . . .

Binomial(n, p) P (X = k) =
(n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n

Gamma(α, β) fX(x) = βα

Γ(α)
xα−1e−βx

1{x≥0}

7.3 Distributions

Poisson distribution Pois(λ)

Intuition: Models the number of events occurring in a
fixed interval of time or space, assuming events happen
independently at a constant average rate.
Parameters: λ ∈ (0,∞) (rate)
Support: k ∈ N0

PMF:

p(k) =
λke−λ

k!
.

CDF: Not used, too complicated
Mean: E[X] = λ
Variance: Var(X) = λ
Exponential family form:

pλ(k) = exp (k log λ− λ− log(k!)) , k ∈ N0.

Characteristic function:

φX(t) = E[eitX ] = exp
[
λ(eit − 1)

]
.

Fisher information:

I(λ) =
1

λ
.

Properties: If X ∼ Pois(θ) and Y ∼ Pois(λ) are inde-
pendent, then

X + Y ∼ Pois(θ + λ).

Exponential distribution Exp(λ)

Intuition: Models the waiting time until the first event
in a Poisson process with rate λ, i.e., time between in-
dependent events occurring at a constant average rate.
Parameters: λ ∈ (0,∞) (rate)
Support: x ∈ [0,∞)
PDF:

f(x) = λe−λx.

CDF:
F (x) = 1− e−λx.

Mean: E[X] = 1
λ

Variance: Var(X) = 1
λ2

Exponential family form:

fλ(x) = exp (log λ− λx) , x ≥ 0.

Characteristic function:

φX(t) = E[eitX ] =
λ

λ− it
, t ∈ R.

Fisher information:

I(λ) =
1

λ2
.

Properties:
• Memoryless property: For s, t ≥ 0,

P (X > s+ t | X > s) = P (X > t).

• The sum of n independent Exp(λ) variables is
Gamma(n, λ) distributed.
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